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Dynamic Flow Control in Store-and-Forward Computer 
Networks 
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Abstract-In a recent  paper we presented  an  analysis of flow  control in 
store-and-forward  computer communication  networks  using a token 
mechanism.  The  analysis  assumed equilibrium  conditions for a selected  set 
of system  parameters which  were  not  dynamically  adjusted  to  stochastic 
fluctuations in the  system load; this mechanism  was  referred  to as ‘‘static 
flow  control.” In this paper we study a “dynamic  flow control” in  which 
parameters  of  the  system  are dynamically  adjusted  to  match  the  availability 
of  resources  in  the  network. Based  on  Markov  decision theory, an optimal 
policy to dynamically  select  the number of tokens is formulated.  Because  an 
exact  solution to the problem is extremely difficult,  an effective  heuristic 
solution  to  the problem  is presented. Numerical  results are given  and it is 
shown  that  the  throughput-delay performance  of a network is better  with 
dynamic  control  than with static  control. 
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Fig.  1. Structure of a network. 

I. INTRODUCTION 

In  a  recent  paper  we  presented  an  analysis  of  flow  control ’ 

in  store-and-forward  computer  communication  networks, 
using  a  token  mechanism [ 1 J .  With  a  token  mechanism,  the 
total  number of unacknowledged  messages  in  a  network be- 
tween  a  source-destination  pair is kept  limited.  The  network 
W ~ S  modeled  as  in  Fig. 1 ,  in  which  the  traffic  controller  (TC) 
is responsible  for  keeping  the  number  of  unacknowledged 
messages  below w ,  the  limit  on  the  number  of  tokens  (for 
simplicity,  we  equivalently  refer  to  this  number  as  the token 
limit). The  destination  node  has  a  finite  number  of  buffers; 
when  the  buffer is full,  any  messages  arriving at  the  destination 
are  rejected  and  no  acknowledgments  for  them  are  sent  back 
to   the  TC.  Messages which  are  not  acknowledged  within  a 
timeout  period (7) are  retransmitted  from  the  TC. A “heavy 
traffic”  assumption  was  made  in [ 11 and  the  study  was 
concerned  with  the  maximum  throughput  of  the  network 
within  the  boundaries  shown  in  Fig. 1. It  was  shown  that  for 
each  token  limit,  there is an  optimal  timeout  which  results  in 
a  maximum  throughput.  The  analysis  assumed  equilibrium 
conditions  for  a  selected  set of parameters  which  were  not 
dynamically  adjusted to stochastic  fluctuations  in  the  system 
load.  These  parameters  are:  the  token  limit, w :  the  t imeout 
period, 7; the  average  message  length, l /p;   the   network  and 
the  destination-node  channel  capacities, C, and Cp,  respec- 
tively;  and  the’destination-node  buffer  size, B .  This  mechanism 
was  referred t o  as  “static  flow  control.” 

In static  flow  control,  parameters  of  the  control  mechanism 
are.not  dynamically  adjusted  to  the  network  load.  Due  to  the 
finite  buffer  size  at  the  destination  node,  messages  may  be 
rejected  and will require  retransmission.  The  extra  network 
traffic  due  to  retransmissions  results  in  an  increased  round- 
trip  delay  causing  frequent  timeouts,  and  consequently  more 
retransmissions;  thus  we  see  the  potential  for  a  dangerous 
positive  feedback  situation. We note  that  if there  were  a 
further  control  to “slow  down”  the  input  of  new  messages to 
the  network  by  reducing  the  token  limit  when  the  destination 
buffer  begins  to  fill,  then:fewer  messages  would  be  rejected 
(or  lost)  at  the  destination  node  and  thus,  fewer  retrans- 
missions  would  be  necessary.  This is the  idea  behind  the 
dynamic  flow  control  mechanism  studied  in  this  paper. 

We consider  a  mechanism  located  at  the  destination  node 
which  supervises  buffer  occupancy  there;  let us call  this 
mechanism  a  traffic  director  (TD).  At  the  disposal  of  the  TD 
there  are  a  number  of  different  token  limites  which  it  can 
choose.  When  the  occupancy  of  the  buffer  increases,  the  TD 
signals  the  TC  at  the  source  node  to  change  its  token  limit 
t o  a  smaller  one;  when  the  occupancy  decreases,  the  TD 
notifies  the  TC  to  change  the  token  limit  to a larger  one. 
This  notification is carried  out  by  control  packets  which  are 
sent   f rom  the  TD to the  source  node  TC. The token  limit 
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used by the  TC  detcrmincs  thc i n p u t  rate  to  the  network; 
therefore,  the  above  mechanis~n  dynamically  controls  the  in- 
put  f low  to  the  network.  To  prevent excessive overhead (as 
with  acknowledgments),  control  packets  are  piggybacked  on 
messages  transmitted  from  the  destination  node  to  the Source 
node;  only if there is no  such message  is a  control  packet 
sent  by  itself. 

The  control  mechanism  operates  as  follows.  A decision 
table is stored  at  the  destination  node  which  specifies  the 
best token  limit  to be used for  different starcs of the  network. 
Knowing  the  state  of  the  network,  the  TD  can  then  use  the 
decision  table  to  decide  upon  the  best  token  limit  it  should 
send  to  the  TC.  The  questions  which  arise  at  this  point  are: 

1) How is a  network  state  specified? 
2) What is meant  by  the  best  token  limit? 
3) How is the  decision  table  set  'up? 
T o  answer  these  questions  we  develop  a  mathematical 

'model of the  system  based  on  Markov  decision  theory. We 
model  the  destination  node  as  a  finite  waiting-room  queueing 
system  with K possible  'input  rates ( K  is also  the  number  of 
different  token  limits;  see  below),  for  which  we  wish  to  find 
an  optimal  selection  policy  for  input  rates  such  .that  the  long- 
run  average  throughput of the  buffer is maximal,  and  the 
average  delay is minimal. (As we will see,  delay is not  due 
only  to  the  destination  node.)  After  defining  a  reward  criteria, 
we  derive  a  maximal  reward-rate  stationary  operating  policy 
for  the  finite  queue;  therefore,  the  problem will be.reduced 
to  the  optimal  control of a  finite  queue  with  variable  input 
rates.  As  we will see  below,  due  to  special  characteristics  of 
the  system  an  exact  solution  to  the  mathematical  model is 
very  laborious;  therefore, we develop  a  heuristic  solution 
to  the  problem. 

In  Section I1  the  model is formulated  as  a  discrete-time 
multistat5-variable  Markov  decision proce;s, which  we  refer 
to  as  a T,-cycle-delay decision  process ( T ,  is the  round-trip 
delay-see  Section 11-A). A  heuristic  solution  to  this  Markov 
process is presented in Section 111. In  Section IV we  discuss 
implementation  of  the  heuristic  optimal  policy,  and  in  Section 
V we  further  elaborate  on  1-cycle-delay  and  continuous-time 
decision  processes  which  we  use to  generate  the  decision  table. 
Finally, in Section VI we  present  some  numerical  results. 

11. THE  MODEL 

We consider  the  destination  node of a  network  (Fig. 1 )  as 
a  buffer  storage  of  size B feeding  an  output  transmission  line 
with  capacity C2 (bits/s). Messages which  arrive  at  the  storage 
after  passing  through  the  network  are  buffered  (if  necessary) 
and  are  then  transmitted  to  the  receiving  user. For the arrival 
process  we  make  the  following  assumption: 

Assumption 1: The  counting  process of message  arrivals 
to  the  buffer is assumed  to  be  Poisson  with  arrival  rate h E A 
(msg/s),  where A = {Al, X,, e.., h ~ }  is the  set  of  possible 
arrival  rates. 

We also  assume  that  message  lengths  are  exponentially 
distributed  with  an  average  message  'length of 1/H (bits). 
With  this  assumption  the  transmission  times Of messages out  
of the  buffer  are  exponentially  distributed  with  rate Y1 = 

For  reasons  which will be  clear  shortly,  we  study  a  discrete- 
time  model  with  very  small  time  increments 6 (e%, 6 = 4 ms), 
and  observe  the  system  at  these  time  intervals.  This  discrete 
approximation  to  the  continuous  case  causes  some  incon- 
veniences  when  we  describe  the  state  transition  probabilities. 

/IC,. 

We assume  that  at  most  one  departure  and  one  arrival  may 
occur i t  each  time slice (of 6 s). This  means  that  at  the  begin- 
ning of each  time  interval  a  new  message  may  arrive  in  the 
buffer  with  probability  (the  result of a  Bernoulli  trial); 
thus  the  average  number of arrivals  per  second is h. The 
transmission  times of messages  are  chosen  independently 
from  a  geometric  distribution  such  that,  for i 2  = 726 < 1 

s, = +2( 1 - i.2y-1 ( 1 )  

where s,, is the  probability  that  a  message  transmission  time 
is exactly 17 time  units  long  (i.e.,  that  its  service  time is n6 s). 
The  average  transmission  time is therefore 

A 1  6 1 
X 2  = time  units = y s = __ S. ( 2 )  

Y2 Y2 PC2 

Regarding  the  order in which  events  take  place  at  the  end of 
a  time  slice,  we  assume  'that  departures  take  place  before 
arrivals.  This  means  that  a  message  which  has  completed  its 
transmission  leaves  the  system  and  then  a  message  which  has 
arrived is delivered  into  the  buffer.  (If  the  buffer is full  and 
there is no  departure,  the  arriving  message is lost  and  must 
be  retransmitted.) 

For notational  purposes  with th: discrete-time  version 
we use  variaples  under  a  circumflex ( ); in  particular,  we  let 
h k  = h k 6 ,  h = h6, and i2 = y26. The  round-trip  delay is 
designatfed by the  random  variable F,. whose  average is T ,  and 
we let T,. = T J 6 .  For th: one-way  delay  the  corresponding 
notations will be t', T ,  and T (= T / 6 ) .  

A .  The State Space 

The  selection of the  appropriate  number of tokens  by  the 
TD  (hence of the  input  rate  to  the  buffer  storage-see  below) 
should  be  based  on  the  occupancy 'of the  'buffer.  Having 
decided  on  the  new  number  of  tokens,  the TD notifies  the 
TC of this  decision  through  the  control  signaling  process 
described  earlier.  When  the  TC  receives  this  notification 
(after  the  one-way  return  delay  of 7 s), it  adjusts  the  token 
limit,  and  the  input  rate  to  the  network is changed  corre- 
sponding  to  the  new  token  limit. We assume'that  this  change 
of input  rate is instantaneous. 

After  the  input  rate is changed,  messages  which  are  ad- 
mitted  with  the  new  rate  reach  the  destination  node  after 
t s. Therefore,  there is a  (random)  time  gap  from  the  time  the 
T D  decides  upon  a  new  input  rate  until  the  result of .this  in- 
put  rate  becomes  effective  at  the  destination  node.  When  this 
time  gap is random,  the  resulting  model  becomes  extremely 
difficult  to  analyze  and in fact,  no  such  analysis  has  been 
reported  in  the  literature. To render  the  model  amenable  to 
analysis,  we  further  assume  that  the  time  gap  between  the 
moment  that  a  decision is made  until  the  time  it  becomes 
effective is a c:onstanf interval  of  duration T,  s, the  average 
round-trip  delay.  Since  the  input  rate  to  the  network  varies, 
the  average  round-trip  delay  fluctuates  as  well;  however,  we 
take T,  as  the  average  of  the  round-trip  delay  due to   different  
possible  choices  of  token  limits  (or  input  rate). 

With  the  above  considerations,  we  note  that  the  decision 
at  time t becomes  effective  at  the  destination  node  at  time 
t -k T,. Considering  the  fact  that  a  decision  on  the  number 
of  tokens is based  on  the  buffer  occupancy,  the  decision  at 
time f should be' based  on  the  occupancy of the  buffer  at 
time t + T,. Thus  the  state  description  at  time t should  con- 

- 
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tain  information,  not  only  regarding  the  buffer  occupancy, 
at  time t ,  but also  the  input  rates  to  the  buffer  in  the  interval 
[ t ,  t i- T,] . (These  input  rates  have  been  decided  upon  n  the 
interval [ t  - T,, t ]  .) In  order  to  include  this  information  in 
the  state variable  we  consider  a  discrete-time  model  in 
which  the  system  is  observed e v e y  6 s; when  a  decision  is 
made  it  becomes  effective  after T,(=T,/6) time  units.  With 
!he above  considerations,  the  state of the  system  at  time 
t(=t/6) is  represented  by X ( ? )  given  by 

X(;) = In(;), i(;, 11, i(i,  2), ..., i(i, 9, - 1)) (3 1 

phere  0 < n( i )  < B is the'  buffer  occupancy  at  time t a n 6  
A(;, k)  (measured  in msg/6 s) is the  inpu;  rate to the  buffer 
at  time (i -k k ) ,  1 < k < f,.. Not: that X(;, k )  is the  result 
of the  decision  which  was  made T ,  - k time  unites  earlier 
than ?. We may  also  label  the  states  by  integers 0, 1, .-, N ,  
where ( N  + 1) is the size of the  state  space;  in  equilibrium 
state, i is defined  as 

i = { n i ,  Ail, hi2, -, XiTr-l} 
A .  . A  

(4) 

(n i  and f i k ,  1 < k < ?,. are  defined  in (5) below). The  set 
of all states  in  the  state  space will  be referred  to by S. The 
cardinality of the  set S, I S 1, is 

1 S I = N + 1 = (B  i- l)K(Tr-l) 

where  K  is  the  number of different  token  limits.  For  con- 
venience  we  use the  symbol ''(=)" t o  associate  a  state,  say 
X ( ? ) ,  to its  lab$ Le.  

X ( ; )  (=> i 

if (5 )  

n(?) = ni and A(?, k )  = iik 1 < k< ?, . 

B. The  Action  Space 

We consider  a  finite  set of token  limits W = ( ~ 1 ,  w z ,  -1.) 

W K }  at  the  disposal of the  TD.  It is shown  in [ 1 and 21 
that  for  a given network  and  for  a  token  limit w ,  a  timeout 
7 can  be  chosen  such  that  the  throughput of the  network 
becomes  maximal.  Hence,  when  the  TD  decides  upon  a  token 
limit, it also  determines  the  appropriate  timeou't. 7 E (71, 
7 2 ,  --, T ~ }  and'notifies  the  TC  in  the  source  node  (in  the 
manner  described  above).  The  set W is the  set' of actions 
in  our  model;  however,  because  each ( w , ~ )  uniquely  deter- 
mines  an  input  rate [ 11,  we  might  as well assume  that  the 
cprrespondin8  set of input  rates' A = {X,, X p ,  -., X,) (or 
{A,, h2, .;*, ' A K } )  is the  set of actions.  In  the  discussion 
below,  we will refer  .{c'.either of these  two  sets (W or A )  
as the  action  space, i.e. 

A = A   o r A = W .  ( 6 )  

Corresponding to  the  above  sets of input  rates,  timeouts, 
and  token  limits,  there  is  a  set of network  delays  {TI, 
T2,  -, T K }  where Tk is  the  network  delay  when wk is  being 
used. 

C. The  Policy  Space 

A policy  specifies  a  tnken  limit  (or  equivalently  an  input 
rate)  which  should  be  sent  to  the  TC.  More  precisely, by  a 
policy f we mean  a  decision  rule.which  says, given that  the 
system 1s a state i, we should  use Xh (pr w k )  as  the  input  rate 
to  the  buffer which  will  be  effective T ,  time  units  later,  that 
is 

f ( i )  = k. ( 7 )  

We are  implicitly  using  policies  that  are  functions of the 
present  state of the  system;  policies  in  this  class  are  known  as 
"stationary  policies,"  'and will  be denoted  by F.  

D. The  State  Transition  Probabilities 

Let  the  states of the  system  at  times t^ and t^ 4- 1 be X(;) (=) 
> i ,  as  defined  in (3), and X ( t  i- 1) ( = ) j ,  where 

i(;+ 1 ,  &2),$+ 1, ?,- 1)). 

The  input rat: $hat  the  TD  selects  at  time i t o  be  effective 
at  time + T ,  X f f x f ; ) ) ,  becomes  part of the  state  vector  at 
time t' 1; therefore  the  components of state  vectors X(?)  
and X(; -I- 1)  are  related to  each  other as  follows: 

The  last  compenent of state  vector X(;+ l ) ,  ̂ x(;+ 1, f,. - 11, 
is the  decision  which  is  made  at  time t .̂ The  number of mes- 
sages in  the  buffer  at  time ? + 1  is  different  from n(?) ;  this  is 
the  result of the possible  arrival of a  message,  with  probability 
x̂(;, l ) ,   or   the  possible  departure of a  message,  with  proba- 

bility q z .  With  the  above  considerations,  the  equilibrium  trans- 
ition  probabilities  under  policy f between  states i and j ,  
p i j ( f l ,  defined  as 

p i j c f )  E Pr [ X ( ;  + 1) (=) j I X ( ; )  (=) i and  policy f i s  used] 

can  be  easily deriv:d.(see [ 21 for  such  a  derivation).  Note'that 
if i j k  f ^xik+l or X j T r A 1  # X,(,,, then Pij(fl = 0. We refer  to 
the  matrix of transition:  probabilities  under  policy f by P O ,  
i.e., P(f l  = Cpijcfl). 

E. The  Performance Criteria  and the  Reward  Function 

The  objective of OUT analysis  is to  find  an  optimal  policy 
which,  in  the  long  run,  maximizes  the average throughput  and 
minimizes  the  average  delay of.the  system;  this  objective is 
reflected  in  our  formulation  through  the  reward  criteria. We 
are  faced  with  incorporating  the  opposing  effects of through- 
put  and  delay  in  a single  objective  function. T o  this  end;  we 
choose  to  use  the  following  performance  measure  in  our 
decision  problem:.  Let X and T be  the  throughput  and  the 
corresponding  delay of a  system;  then  the  reward of this 
system  is  defined  as 
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Note  that  a  high  throughput  and  a  low  delay  result in a large 
value  for R ,  which  reflects  the  efficiency  of  the  netw0rk.l  The 
coefficient (Y reflects  our  relative  preference  for  large  through- 
put  with  respect  to  low  delay. (Y = 0 corresponds  to  a  situation 
where  we  cannot  accept  any  delay  (we will see  shortly  that 
this  value of (Y results  in  zero  throughput,  and  hence,  zero 
delay).  The  other  extreme is when (Y +ioo,which  reflects  the 
case  that  throughput is the  only  measure  of  performance. 

Having  defined  the  objective  function,  we  must  now  find 
the  expected  immediate  reward  (the  reward  to  be  expected 
in  the  next  transition [ 5 1 )  for  each  state. We use R i ( f )  for  the 
expected  immediate  reward  for  state  i  under  policy f. In [ 21 i t  
is shown  that  for  a  state i given by (4), ihe  expected  im- 
mediate  reward  rate is 

The  argument  behind  (1  1) is the  following:  In  a  transition 
from  state i to  any  succeeding  state,  each  one of the ni mes- 
sages  in the  buffer  suffers  one  unit  ofAdelay  (the  term -ni). 
If a  messagc  arrives  (with  probability Ai1), and is accepted, 
it  is  guaranteed  delivery to  the  receiver,  hence  the  gain  for  the 
throughput is axil. On  the  other  hand  eachAarriving  message 
brings  with  it  an  amount*of  delay  equal.to Ti1 (which  corre- 
sponds  to  the  input  rate hi1) which  it  has  suffered  in  passing 
thrqugh  the  network;  therefore,  the  loss  due  to  delay is 
xilTil. When  the  buffer is full  (the  second  line of (1   l ) ) ,   an  
incoming  message  can  be  accepted  only’if  the  message  which 
is being  sent  out  of  the  buffer  completes  transmission. If not ,  
the  incoming’message is rejected  and  has to  be  retransmitted 
after iil seconds.  (For  a  detailed  derivation of ( 1  1)  see [ 21 .) 
We designate  the  vector  of  expected  immediate  reward  rates 
under policy f b y  R(F),  i .e., ,R(fl = {Ri( f l}  . 

F. Statement of the  Problem 

’ The  above  formulation  specifies,  a  Markov  decision  process 
(chain)  that  represents  a  system  in  which  there  is  a  constant 
time  gap  between  the  instant  a  decision is made  until  the 
time  th?  decision  becomes  effective;  we  refer to  this  process 
as  a  Tr-cycle-delay  Markov  decision  process.  Processes 
similar to  this  are  encountered  in  inventory  problems,  where 
there  is  a  leadtime  for  an  order  to  arrive [ 61, [ 71. 

The  set of stationary  policies  in  our  decision  process  is 
actually  a  subset  of  the  set  of  all  policies.  Under  stationary 
policy f the  average  reward  per  unit  time  is  designated  by  the 
vector g o  = {g i ( j ) } ,  where g i ( j )  is the  long-run  expected 
reward  per  unit  time given that  the  process  initially  starts  in 
state i. g(j) is  given by 

where  [P(j)] t ,  the  tth  power  of Po, is the  t-step  probability 
transistion  matrix  under’stationary  policy f. If f is a  policy 

1 Another possible  choice for the objective function may  be “power,” 
defined as the ratio of throughput and delay ( h / n  [ 3 ] ,  [4] ;however, 
because (10) combines A and T linearly, the resulting  analysis is more 
tractable. 

such  that  the  Markov  chain  defined  by P o  is completely 
ergodic, i.e., if there  only  one  recurrent  chain  in  the  system, 
then all components  of g o  are  equal [ 5 1 .  Our  objective  is t o  
find  a  (stationary)  policy f“ which  maximizes  each  component 
of  the  expected  average  reward  per  unit  time, i.e., 

g(P) = max W X .  (13)  
f E F  

It  can  be  shown  that  for  a  bounded  reward  function,  when 
the  action  space  and  state  space  are  finite,  such  a  stationary 
policy  always  exists [ 81, [ 91.  These  conditions  are  met  in 
our  problem. 

111. SOLUTION  TO  THE  PROBLEM-THE  LOOK-AHEAD 
POLICY 

The Fr-cycle-delay  Markov  decision  process  formulated in 
the  last  section  can,  in  principle,  be  solved  for  an  optimal 
stationary  policy  by  using  any  numerical  technique, e.g., 
the  policy-iteration  method [ 5 ] .  Unfortunately,  for  any 
realistic  set  of  parameters,  the  size of the  problem  (especially 
the  state  space)  becomes  too  large;  it  is  extremely  laborious, 
if not  impossible,  to  solve  such  a  large  problem’by  any  con- 
ventional  means.  As  an  example,  consider  a  system  in  which 
the  round-trip  delay T,. = 0.2 s, ,B = 10,  and K = 5. If we’use 
6 = 4 ms  as  our  time  unit,  then Tr = 50, and  each  state  vector 
has 50 components.  The  size of the  state  space  for  this  system 
is 

I S  I = 11 x 5 4 9  X 

Considering  the  fact  that  each  cycle of the  policy-iteration 
method  requires  solution  of  a  set  of I S I linear  simultaneous 
equations,  a  direct  solution  to  this  problem  is  out of the  
question;  hende  we  must  resort  to  a  heuristic  solution. To 
this  end  we  consider  the  following: 

1) The  major  difficulty  in  computation  arises  ffom  the  long 
round-trip  delay.  For  a  round-trip of 2 units ( T ,  = 2 ) ,  the  
size of t he .   s t a t e  space  for  tFe  above  example be:omes 
IS I,= 11 X 5 = 55 and  when T,. = 1,  i t  is only  11. ( T ,  = 1 
results  in  a  1-cycle-delay  Markov  decision  process  in  which 
a  decision  becomes  effective  in  the  next  transition;  this  is  the 
case  with  an  ordinary  Markov  decision  process  and  we  make 
extensive  use  of  this  case  in  our  heuristic  solution.) . 

2 )  Consider  a  1-cycle-delay  decision  process (T,. = 1). 
For  this  system  the  only  information  necessary  to  select  the 
token  limit  is  the  buffer  occupancy;  in  fact  in  this  case  the 
complete  state of the  system is represented  si2ply  by  the 
buffer  occupancy.  When  there  is a leadtime of T,. > 1 for  a 
decision to  become  effective,  the  process  makes  use  of  the 
input  rate  components  of  a  state  vector  to  estimate  the  future 
occupancy of the  buffer  at (T,. - 1)  time  units  later.  Based on 
this  prediction,  it  then d:cides o n  a  token  limit  ‘(or  an  input 
rate)  to  be  effective  at T,. time  units  .later.  Note  also  that if 
at  time 1 we  ‘provide  the  decision  process  with th: future 
buffer  occupancy  at,  say, k time  units  later ( k  < Tr) ,  then 
from  the  decision  process  point  of  viep,  the  leadtime  for  a 
decision to  become  effective  reduces  to Tr - k .  

The  above  considerations  lead  us to develop  the  following 
heuristic  splution  for  the  decision ’ process.  Consider  state i 
(4) of a  Tr-cycle-delay  Markov  decision  process. The ‘corn- 
ponent Xik in  the  state  vector  is  the  input  rate to tge  buffer 
k time  units  after  the  system is in state i: Knowing the future  
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input  rates  to th: buffer,  we  can  find  the ~xpcc;tcd occupancy 
of the  buffer  at Tl time  units  later ( 0  < TI < T,); we refer t o  
f l  as  the look -ul!c>ad time  and  designate  the  expected  buffer 
occupancy  after TI transitions  from  state i by Gi(+ f l ) ,  When 
the  set of policies  and  the  state  transition  probabilities  are 
properly  defined,  the  vector 

= {ci(+fr) ,  ii+l+l, & ~ 1 + 2 ,  ...> &+,.-I) (1 4 )  

specifies  a  state of a (f', - fl)-cycle-delay  decision  process. 
We designate  the  set of states  of  this  process  by S'. For  this 
process,  a  (stationary)  policy /' is defined  as  a  function  from 
the  state  space Sf to  the  action  space A defined by (6) i.e., 
f ' :  S' --f A .  If IS' I is not  too  large,  we  can  find  an  optimal 
stationary  policy f ' *  for  this  process,  and  use  this  policy .to 
find a (sub)optimal  stationary  policy /;* for  the original T,.- 
cycle-delay  decision  process, so that 

fs*(i) = j'*(i') (15)  

where  i' is given by  (14).  The  expected  reward  rate  (and  the 
long-run  average  throughput)  for  policy fs* is found  to  be 
very  close to  the  optimal  expected  reward  rate  for  the  original 
process.  (The  numerical  results in Section VI ?upport  this 
claim.) We  refe: t o  policy /;* as  the  optimal  TI-look-ahead 
policy,  where TI js the  look-ahead  time. We summarize  the 
above  procedure  in  the  algorithm given below. 

Algorithm 1 ;The Look-Ahead policy: 
1) For  the T,-cycle-d$y yarkov  decision  process, fi!d a 

Ipok-ahead  interval 0 < TI < T,, such  that  the  resulting {T,. - 
TI)-cycle-delay  Markov  decision  process is solvable  (i.e.,  the 
computational  cost is acceptable). 

2) Use any  appropriate  technique (e.g. ,  the policy-;lterat!on 
method [ 51) to  find  an  optimal  policy f'* for  the ( T ,  - Tl)- 
cycle  delay  decision  process. 

3) For  each  state  i  of  the T,.-cycle-delay decision  process 
fipd Ei(+Tl( and  the  corresponding  state i (14)  for  the 
(T,. - TI)-cycle-delay  decision  process.2 (ni(+ Tl) should  be 
rounded  to  its  nearest  integer.) 

4) The  (sub)optimal  decision  at  state i is  given  by j ; * ( i ) ,  
where/;*(i)  =f*(i ').  

The  above  heuristic  solution  plays  a  crucial  role  in  making 
possible  the  use of the  policy-iteration  method  to  solve  opti- 
mization  problems  involving long round-trip  delays  and  large 
numbers  of  possible  token  limits. 

IV. IMPLEMENTATION OF  THE  LOOK-AHEAD  POLICY- 
THE  DECISION  TABLE 

We have so far  answered  two of the  three  questions  we 
posed  in  the  opening  remarks  of  this  paper.  In  this  section  we 
address  the  last  question  and  describe  the  structure of the 
decision  table,  how  it  is  set  up,  and  how  it is used  by  the  TD. 

In  Section 11: we  described  how a (sub)optimal  stationary 
policy  for  the  T,-cycle-delay  Markov  decision  process  could 
be  found heuris;ically .by using  the  optimal  policy  for  the 
corresponding (T,. - Tr)-cycle-delay  decision  process.  Once 
an  optimal  policy  for  this  smaller  size  decision  process is 
found,  we  can  set  up ? decision  table  which  has  one  entry 
for  each  state  of  the ( T ,  - Tl)-cycle-delay  decision  process. 
For  each  state,  the  corresponding  (optimal)  token  limit is 
listed in a decision  table;  therefore  the  size of the  decision 

2 For a derivation of H i ( +  T I )  the interested reader is referred to [ 2  1 .  

TABLE I 
r<XAMI'Ll: 01; A DECISION T A B L E  

- 
State Decision 

'fbut'fer occupancy) (token limit chosen) 

0 4 
1 3 
2 2 
3 1 
4 1 
5 0 
6 0 

- 

table, Nt,l ,  is 

N , , ~  = ( B  + l ) K ( + r - + l - l ) .  (16) 

The   TD always  stores  the  current  state  vector of the  system; 
at  time i this  vector  looks  like X ( ; )  given in (3). Each  time 
the  TD  must  decide  on  a  token  limit,  it  calcylates  the ,ex- 
pected  occupancy  of  the  buffer  at  time f + Tl,  z(t' + T I ) ,  
and  sets  up  the  following  vector: 

X' (? )  = {G( i  + +1),  i(?, i; + I ) ,  i(i, fl + 2), .-,i(i, fr- 1)). 

(1 7 )  

( In  fact ,   the  expected  buffer  occupancy  should  be  founied 
to  its  nearest  integer.) X ' ( i )  is a  state  vector  for  the ( T ,  - Ti)- 
cycle-delay  decision  process,  and  the  token  limit  for X'(t^) in 
the  decision  table is the  one  that  the  TD  should y e .  InATable 
I we show  a  hypothetical  decision.table  when T,  = T ,  - 1, 
and  the  destination  buffer  size is B = 6. In  this case  the 
decision  table  specifies  an  optimal  policy  for  a  1-cycle-delay 
decision  process in which  a  decision  becomes  effective on 
the  next  transition  (which is the case  for  an  ordinary  Markov 
decision  process);  therefore,  the  state  of  the  process is simply 
the  buffer  occupancy.  A  decision is an  optimal  token  limit 
for  a  state. 
Note  that  when  the  buffer  occupancy is 5 or  6,  the  optimal 
token  limit is 0, i.e., for  the  particular  value  of Q which is 
used  for  this  table,  the  system is closed to  further 
input  when  the  occupancy is 5 or 6. (See  Table I1 below  for 
other  examples of decision  tables.)  For  Table  I, A"(;) given 
by ( 17) reduces  to  a  single  number,  i.e., 

.x'(;) = E(? + = E(; + ?,. - 1). 

The  choice of the  look-ahead  time, TI, should  be  based  on 
two  considerations:  optimality of the  decisions  made  by  the 
TD  and feasi!ility of solving  the  reduced  decision  process. 
For   a   sn~al l  Tl, the  decisionsAmade  by  the  TD  are  closer  to 
the  optimal  (note  that  for T,  = 0, the. TD'sAdecisions  are 
the  optimal);  however,  the  resulting (T,. - Tl)-cycle-delay 
decision  process is large t o  solve,  and  also  the size of  the 
decisio?  table  becomes  large,  see (16). On  the  other  hand, 
when Tl is large,  the  result  of  the  decisions  made by th,e 
TD  may  be  far  from  the  optimal;  nevertheless,  a  large TI 
also  results in a  small  decision  procey  to ?olve and  a  small 
decision  table.  The  largest  value of TI is T ,  - 1,  for  which 
the  state  of  the r:duced.decision process is simply  the  buffer 
occupancy. For Tl = T,. - 2 ,  X' ( t ' )  has  two  components 
which  corresponds  to  the  state  of  a  2-cycle-delay  decision 
process.  Although  this  system is not  too large t o  solve ( the 
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State 
(buffer  occupancy) 

m = 0.4 

0 0 . 3  1 0  
1 0.232 
2 
3 

0 .  I 7 6  

4  0.07X 
0.128 

5 0.047 
6 0.02x 
7 0.014 
X 
9 

0.001 
0.000 

10 0.000 

Average buffer occupancy 
Aversge token size 

Average  throughput 
Average  buffer  delay 
Average  network  delay 
Average  total  delay 

State 
(buffer  occupancy) a = 0.6 

0'  0.248 
I 
2 

0. I 9 9  
0.159 

3  0.123 
4  0.092 
5 
6 

0.066 
0.047 

7 0.031 
X 0.019 
9 

I O  
0.009 
0.004 

Average  token  size 
Average  buffer  occupancy 
Average  throughput 
Average  buffer  delay 
Average  network  delay 
Average  total  delay 

(token  chosen) 
Decivion 

6 
5 
5 
4 
3 
3 
2 
I 
0 
0 
0 

4.77 
1.78 

34.51 
0.05 
0.07 
0.12 

Decision 
(token  chosen) 

X 
X 
7 
6 
5 
5 
4 
3 
2 
2 
0 

6.66 

37.59 
2.3X 

0.06 
0.09 
0 15 

size  of  the  state  space  for B = 10  and K = 5 is 55),  a  problem 
which  arises is that  the  resulting  state  transition  probability 
matrix  may  have  more  than  one  chain;  therefore,  the 
solution of the  decision  process  becomes  very :omplex and 
time  consuming. For values of T1 less than T ,  - 2, not  
only  does  the  state  space  become  large,  but  also  we  face 
t,he problem  of  multichain  systems. For these  reasons Tl = 
T ,  7 1 is a  convenient  choice,  and  we  have  used  this  value 
?f Tl in  our nuyerica! example. To support  this  choice  of 
Tl ,  we  also  used T1 = T ,  - 2 and  found  that  the  performance 
of  the  network  (in  terms  of  throFghpyt  and  delay)  was 
almost  identical  with  the  case  when Ti = T ,  - 1. 

V. 1-CYCLE-DELAY  AND  CONTINUOUS-TIME  DECISION 
PROCESSES 

When  the  look-ahead  time fl is equal  to ?, - 1,  the  de- 
cision  table  becomes  an  optimal  (stationary)  policy  of  a  l- 
cycle-delay  (discrete-tiye)  Markov  decision  process.  The 
general  formulation  of T,-cycle-delay processes  we  presented 
in  Section I1 also  applies  to  discrete-time  Markov  decision 
processes. 

When the  time  increment 6 is small,  decisions  become 
effective  very  quickly;  in  the  limit  as 6 + 0, the  above 
discrete-time  Markov  decision  process  becomes  a  continuous- 
time  process.  In  the  continuous-time  mode  the  rate of 
transition  (rather  than  the  probability of transition)  out  of 
a  state is a  function of the  action  taken  in  that  state.  Because 
in  this  process  decisions  effectively  become  instantaneous, 
the  optimal  reward  rate  for  the  continuous-time  process is 

the  best  performance  we  can  expect  from  the  system,  and 
the  throughput  for  the  optimal  policy 1' is the  highest  that 
can  be  expected.  Therefore,  we will compare  the  perform- 
ance of our  look-ahead  policy  with  the  performance of this 
continuous-time  model. 

SO far  we  have  assumed  that  for  a  set of token  limits W ,  
we can use the  results  of  the  static  flow  control [ 11 to  f ind 
the  optimal  input  rates (or throughput) of the  network A = 
{AI, ha, .-, hK}.  In [ 1 1  it is shown  that if the  token  limit 
w,. channel  capacity  C1,  and  the  loss  probability PI of  a 
network  are  known,  then  an  optimal  timeout ( T ~ * )  can  be 
found  such  that  the  throughput  of  the  network  becomes  max- 
imal.  The  problem  which we face  here  is  that  the  loss  proba- 
bility, PI, is itself a  function of the  (optimal)  policy  that  we  use 
t o  select  token  limits.  On  the  other  hand  the  optimal  policy 
is determined  by  using  the  set  of  input  rates A; therefore, 
evaluation of the  input  rates {x,} depends  on  the  loss 
probability PI, which is itself a  function of the  input  rates. 
In [ 2 ]  an  iterative  procedure  has  been  developed  to  remove 
this  recursion;  the  interested  reader is referred t o  this 
reference. 

VI. NUMERICAL  RESULTS 

In  this  section we present  numerical  examples  for our 
dynamic  .flow  control,  study  optimality  of  the  look-ahead 
policy,  and  investigate  the  effect  of  the  parameter a on  the 
throughput-delay  performance of a  network.  Throughout 
our  presentation  we  consider  the  normalized  value of certain 
parameters;  the  normalization  constant is X1 = ( l / p C l ) ,  
the average  transmission  time of a  message  on  a  network 
channel. 

We start  by  studying  the  throughput-delay  performance  of 
a  continuous-time  model  in  which  the  effect of a  decision  is 
instantaneous.  In  this  hypothetical  system  there  is  no  time 
gap  from  the  moment  that  a  decision is made  until  it 
becomes  effective.  Hence,  performance of the  continuous- 
time  model is the  best  that  can  be  achieved. 

As we pointed  out  earlier,  the  value of a! reflects  our 
relative  preference  for  high  throughput  over  low  delay. 
Table I 1  shows  the  effect of parameter a on  the  throughput- 
delay  performance of the  system.  In  this  table  the  destina- 
tion  buffer  size is B = 10,  the  channel  capacities  of  the 
network  and  the  destination  node  (C1  and C2) are  both 
50 kbits/s,  the  average  message  length is 1000  bits,  and  the 
set of allowable  token  limits is W = (0, 1, 2, ..-, 20). This 
table  shows  the  optimal  policies  and  their  corresponding 
statistics  for a = 0.4 and a = 0.6. It is seen  that  for a! = 0.6, 
larger  token  limits  are  used  (and  a  higher  throughput  results); 
for  example,  when  the  buffer is empty  (state 0) for  = 0.4, 
w = 6 is the  optimal  decision,  whereas  when CY = 0.6, w = 8 
becomes  the  best  decision.  Although  the  delay  (and  through- 
put)  due  to w = 8 is larger  than w = 6, a  token  limit  of 8 
becomes  the  optimal  decision  because a = 0.6 puts  more 
weight  on  high  throughput  than (11 = 0.4. It  is  seen  that  not 
all .of the  allowable  token  limits  are  used  in  either  of  the 
above  cases;  therefore,  not  only  can  the  parameter a! be 
used to  control  the  throughput,  but  the  largest  token  limit 
can  be  controlled  also  by  a  proper  selection of a!. Considering 
the  fact  that  the  largest  token  limit  which is used  reflects 
the  number of buffers  needed  at  the  source  node,  the  impor- 
tance  of  this  parameter  becomes  clear.  Furthermore,  the 
number  of  buffers  required  at  the  destination  node is also 
determined  by a (for  example  for a! = 0.4 a  buffer  size  of 
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Fig. 2. Throughput-delay performance of continuous-time model for 
different buffer sizes. 

B = 8 is sufficient);  therefore,  this  parameter  can  also be 
used to  control  the  utilization  of  the  destination  node 
buffer. 

Fig.  2  shows  the  throughput-delay  (the  end-to-end or the 
total  delay)  performance of the  continuous-time  model  for 
different  buffer sizes for  the  destination  node.  The  set of 
allowable  token  limits  and  other  parameters of the  system 
are  the  same  as in Table 11. For  a  fixed B ,  the  average 
throughput  and  delay  increase  as 01 increases. For  a given 
value  of 01, an  optimal  decision is determined  such  that  the 
expected  (long-run)  reward  rate  becomes  maximal.  From 
( I O )  we can  relate  the  expected  reward  rate  to  the  (long-run) 
average  input  rate (or throughput)  and  the  average  delay of 
the  system, 

Equation  (18)  indicates  that  under  an  optimal  policy,  for 
each x the  corresponding T is the  lowest  that  can  be  achieved 
(equivalently  for  each T ,  X is the  maximal). I f  there  were 
another  policy  that  could  generate  lower  delay  for  the  same x, then R would  not  be  maximal.  Therefore,  the  throughput- 
delay  curve  for  a  fixed B in this  figure  defines  a  tight  lower 
bound on delay  and so can  be  viewed  as  the optinzul rletwork 
perforrnunce for our  class  of  dynamic  flow  control  policies. 

When  we  include  a  leadtime  for  decisions  to  become 
effective,  the  throughput-delay  performance of a  network 
with  a  look-ahead  policy will be  inferior  to  the  instantaneous 
feedback  case.  Fig. 3 shows  the  performance of the  network 
under  the  look-ahead  policy. In this  figure  the  time  interval 
f i  is 4 ms  (i.e.,  the  state  of  the  system is observed  every 4 

B =  10 
O<W<20  3 
C1 = C2 = 50 kbps 

, l /p = 1000 BITS 
6=4msec 

tr = ROUND-TRIP DELAY = 30 
A 
Tp = LOOK-AHEAD TIME = 29 

v DECISION CYCLE = 1 
m DECISION CYCLE = 5 
0 DECISION CYCLE = 10 

OPTIMAL  THROUGHPUT 

0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

NORMALIZED THROUGHPUT 

Fig. 3. Throughput-delay performance of look-ahead policy. 

ms),  and  the  desti?ation  node  has 10 buffers ( B  = 10).  The 
round-trip delay (T,.) is assumed to  be 30 time  units f o r  the 
entireArangeA of throughput,  and  the  look-ahead  time is 29 
(i.e., T, = T ,  - 1). The  other  parameters of the  system  are 
the  same  as in Fig. 2. The  solid  curve  in  Fig. 3 corresponds 
to  a  I-cycle-delay  (discrete-time)  decision  process  (which is 
the  counterpart of the  continuous-time  model);  therefore, 
this  curve  represents  the  best  performance  that  can  be 
achieved in the  discrete-time  model  from  the  look-ahead 
policy.  In  order t o  investigate  its  performance,  we  tested  the 
look-ahead  policy  by  simple  simulation  experimfents. 

In !he simulation  experiments we used T ,  = 30 and 
Tl = T ,  - 1 = 29.  The  other  parameters (C l ,  C2, ..., etc.) 
were  the  same  as in Fig. 3. The  decision  table  (Table I)  
was set  up  by  finding  an  optimal  policy for the  correspond- 
ing I-cycle-delay  decision  process  (Section IV).  Initial 
occupancy of the buffe:, n(O), aFd  the  input  rates  for  the 
first 29  time  units (X(]), h(2) ,  ...> h(29)) were also initialized. 
(When  the  simulation  run is long  enough,  say  20,000  time 
units,  the  initial  values  have  ‘no  effect  on  the  final  statistics.) 
At  each  time  unit,  say t‘, an  input  toLhe  buffer  and  an  output 
from  the  buffer  (with  probabilities X(;) and + 2 ,  respectively) 
were  generated  by  the  Monte  Carlo  technique,  and  the 
buffer  occupancy  was  updated.  After  collecting  the  staJistics 
(the  input  rate  and  delay),  an  input  rate  for  time i -t T,. was 
decided  by  using  the  decision  table,  and  the  simulation  time 
was  advanced.  (Actually  for  decisions  cycles  greater  than 1 ,  
the  decisions  were  made  periodically;  see  below.) 

The  points  indicated  by ‘‘v” in  Fig. 3 show  the  perform- 
ance  of  the  look-ahead  policy  when  decisions  are  made  at 
each  time  unit  (decision  cycle = 1).  It is seen  that  the 
throughput-delay  performance  in  this  ctse is+ extremely 
close to  the  optimal.  Considering  that  for Tl = T ,  - 1 = 29 
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the  performance of the  look-ahead  policy  should  be  the 
worst,  the  excellent  match  between  the  optimal  performance 
and  the  performance  due  to  the  look-ahead  policy is most 
encouraging. 

We pointed  out  earlier  that  control  packets  to  carry 
decisions to  the  source  node  are  piggybacked  on  messages 
going  from  the  destination  node  to  the  source  node,  and 
if there  are  no  such  messages,  control  packets  are  trans- 
mitted  by  themselves.  Therefore,  signaling of control  packets 
generates  overhead  traffic.  For  this  reason  it is not  a  good 
policy  to  decide  on  a  new  token  limit  at  each  time  unit;  it  
is better  to  make  decisions  periodically.  In  Fig. 3 we  have 
also  shown  the  performance  of  the  look-ahead  policy  when 
decisions  are  made  every 5 time  units (“m”), or every 10 
time  units (“e”). (When  the  decision  cycle  is, say 5 ,  the 
decision  made  at  time t‘ is used  as  the  decision  for  times 
t^ f 1  to  t^ f 4;  at  time t‘ f 5 a  new  decision is made.)  For 
decision  cycles  larger  than 10 the  throughput-delay  curves 
differed  significantly  from  the  optimal.  Therefore,  as  long  as 
the  decision  cycle is below  a  certain  limit,  the  throughput- 
delay  performance  of  the  periodic  look-ahead  policy is not 
sensitive to  the  exact  value of the  decision  cycle.  This  prop- 
erty is important,  as  a  periodic  decision  reduces  the  overhead 
due  to  signaling of control  packets. 

So far  we  have  assumed  that  the  round  trip  delay, c,, is 
fixed  for  the  whole  range of throughput;  in  reality T,. is 
larger  for  higher  throughputs. T o  investigate  sensitivity of 
the  throughput-delay  performance  to  the  round-trip  delay, 
we  used  the  simulation  program  described  earlier,  but 
changed  the  roynd-trip  delay  as  the  throughput .incre;dsed 
(the  look-ahead  time  was  also  changed  such  that TI  = T ,  - 
1).  The  points  indicated  by ‘‘e” in ,Fig. 4 correspond  to  the 
performance of the  system  when T,. varies. The solid  curve 
in  this  figure is the  throughput-delay  curve  for  the  1-cycle 
delay  defision  process  for  which  the  round-trip  delay is 
fixed  at T,. = 30. Fig. 4 indicates  that  the  perform?nce of the 
look-ahead  policy is not  sensitive  to  a  variation in T, ,  and  if a 
proper  average  round-trip  delay is used,  the  performance is 
close to  the  optimal.  

In  order  to  investigate  the  sensitivity  ofAthe  throughput- 
delay  performance o n  the  look-ahead  time ( T I ) ,  we  simuitted 
a, network  with  parameters  shown  in  Fig. 3 ,  but  we  let TI = 
T,  - 2 = 28. The  perforT1ance  in  this  case  was  almost 
identical  to  the  case whe! TI  = 29. In  order  to  use  a’look- 
ahead  time  smaller  than T,  - 2,  we  must  find  an  optimal 
policy  for  the  corresponding  n-cycle-delay  Markov  decision 
process,  where n > 2. As pointed  out  earlier,  the  solution 
is fairly  complicated  and  time  consuming  because  the 
corresponding  Markov  process  may  have  more  than  one 
irreducible  chain.  *Considering  the  fact  that  a  maximum  look- 
ahead  time  (i.e., Tl = T ,  - lk  results  in  a  performance  very 
close to  the  optimal  (Fig. 3), T,. - 1 is a  convenient  and  good 
choice  for  the  look-ahead  time. 

In  Fig. 5 we  compare  the  optimal  throughput-delay  curves 
for  static  and  dynamic  flow  control.  This  figure  shows  that 
the  throughput-delay  profile of a  network  using  dynamically 
adjusted  token  limits is somewhat  better  than  the  perform- 
ance  under a static  control.  Therefore,  dynamic  flow  control 
can  further  enhance  the  traffic  handling  capability  of  com- 
puter  networks. 

VII. CONCLUSION 
In  this  paper  we  developed  and  analyzed  a  dynamic  de- 

cision  policy t o  select  the  number of tokens  to  control  the 
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flow  in  store-and-forward  computer  networks.  The  dynamic 
flow  control  developed  here is essentially  an  extension  and 
(slight)  improvement of the  static  flow  control  studied  in 
111. 

Using the  theory of Markov  decision  processes,  the 
decision  problem  was  formulated,  and  a  heuristic  solution 
to  an  optimal  policy  was  presented  as  an  alternate  to  the 
laborious  exact  solution.  The  formulation  and  the  heuristic 
solution is general  in  the  sense  that  it  can  be  applied  to  any 
decision  process  in  which  there is a  leadtime  for  a  decision 
to  become  effective,  a  common  situation in inventory 
systems. We introduced  a  parameter CY which  reflects our  
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preference  for  throughput  over  delay.  This  parameter  can be 
considered  as a further  control  tool  to  limit  the  throughput, 
the  delay,  the average and/or  the  maximum  number of 
tokens,  and  to  limit  the  destination  buffer  utilization  (Table 

The  numerical  examples  indicate  that  the  performance of 
a  network  when  token  limits  are  selected  according  to  the 
suboptimal  policy  determined  by  our  heuristic  solution is 
very  close to  the  performance of an  optimal  policy  (Fig.  3). 
This  figure  further  indicates  that  the  performance of a 
periodic  decision,  is  very  close  to  the  optimal  as  long as 
the  decision  period is chosen  properly.  This  property  is of 
significant  importance  in  practical  application,  as  a  periodic 
decision  reduces  the  overhead  due  to  the signaling of control 
packets. 

I?) ; 
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Static Flow Control  in  Store-and-Forward  Computer Networks 
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Abstract-In this paper we develop  an  analytic  model  for  end-to-end 
communication protocols  and  study  the window  mechanism  for  flow 
control in store-and-forward  (in particular  message-switching)  computer- 
based communication  networks. We develop  a  static flow control  model  in 
which the parameters of the  system  are  not  dynamically  adjusted to the 
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stochastic  fluctuation  of  the  system load.  Numerical results are presented 
and it is shown  that the throughput-delay  performance of a  network  can be 
improved by proper selection  of the  design parmeters, such as the  window 
size,  the timeout period,  etc. 

INTRODUCTION 

A computer  network  may  be  thought of as  a  collection  of 
resources t o  be  used  by  a  competing  population of users. 
Network  resources i~clude  buffers,  transmission  bandwidth, 
processor  time,  name  space,  table  entries,  logical  channels, 
etc.;  the  user  population  includes  any  source of data  which 
requires  transmission  through  the  network.  The  collection of 
resources  has  a  limited  capacity  which  causes  conflicts t o  
occur  among  the  users of the  system.  These  conflicts  may 
result  in  a  degradation of system  performance  to  the  point 
that  the  system  becomes clogged and  the  throughput  goes  to 
zero [ 11.  This  behavior  is  typical of “contention”  systems 
in  which  the  throughput will increase  with  the  applied  load 
up  to  some  optimum value,  beyond  which,  due to unpredict- 
able  behavior  by  users  and  servers  and  additional  user-user 
and user-server interaction  and  overhead,  more  load  causes 
a  reduction  in  throughput  [2] .I Networks  cannot  afford to 
accept all the  traffic  that is  offered  without  control;  there 
must  be  rules  which  govern  the  acceptance  of  traffic  from 
outside  and  coordinate  the  flow  inside  the  network.  These 
rules  are  commonly  known  as fZow.contro2 procedures.  More 
precisely  flow  control  is  the  set of mechanisms  whereby  a 
flow  of  data  can  be  maintained  within  limits  ‘compatible  with 
the  amount of available  resources [ 31 . ’ 

In  order  to  keep  the  network  traffic  within  desirable  limits, 
flow  control  procedures,  among  other  things,  must  be  equipped 
quipped  with  throttling  mechanisms.  These  mechanisms 
include: credit (or tokens), which give permission  for  message 
flow;  a rate at  which  a given flow  may  proceed;  a stop-andgo 
procedure  which  turns  a  flow  on  and off according to   some 
criteria;  the  introduction of delay, so as  to slow  down  the 
flow,  etc.   [3].  A window  mechanism  is  an  example of the 
credit  scheme. 

Existing  control  methods  in  store-and-forward  communica- 
tion  nets  can  be classified  as either  local  control  or  global 
control.  Local  control is applied  by  a  communication  pro- 
cessor  within  the  subnet OD the basis of its  own  as well  as  its 
immediate  neighbors’  traffic  data  and  resource  utilization. 
Due to  some  l imitations  [4],  [ 51,  local  control is not,   by 
itself,  sufficient t o  prevent  congestion,  and  global  control is 
necessary  in  order  to  further  stop  the  input  to  the  network 
well before  the  network is  loaded to  saturation.’%his  control 
can  be  accomplished  by  limiting  the  number of packets 
simultaneously  contained  in  the  network.  Examples of the 
existing  methods ~f global  flow  control  are:  isarithmic  flow 
control  [4]  studied  for  the NPL network;  and  end-toend 
flow  control ([6] and  the  references  therein] ) used in  the 
ARPANET,  where,  basically,  the  total  number  of  credits 
between  two  users  are  limited. 

Most  end-tolend  flow  control  mechanisms  use  a  variant of 
the  credit  throttling  technique  and  are  usually  described  in 
terms of a  window  mechanism [ 7 ] ,  where  the  unacknowl- 
edged  messages (or  packets)  are  limited to lie  within  a  sliding 
window. 

End-to-end  flow  control  is  accomplished  through  inter- 
process  communication  protocols  and  any  attempt to quanti- 
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